

Quest	stion	Expected answers	Marks	Additional guidance
e	e		4	ANNOTATIONS MUST BE USED CARE: Cl can be on any position, e.g. for \mathbf{B} complex ions in C and D can be other way around In one complex ion, the 2 Cls must be opposite one another In the other complex ion, the 2 Cls must be next to one another CARE: $\mathbf{C l}$ atoms can be on any position, e.g. for \mathbf{C} and \mathbf{D}
		Marking sequence See also Appendix 2 for examples 1. Mark any correct complex ions first Do not look at these complex ions again 2. Mark with crosses a y complex ions with incorrect ligands. This could include Cl in complex \mathbf{A}, and $\mathrm{NH}_{3} \mathrm{Cl}^{+}$and $\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$, but NOT $\mathrm{NH}_{3}-----$ connectivity on the LEFT only and NOT Cl ${ }^{-}$and NOT just $\mathrm{NH}_{3}{ }^{+}$ Do not look at these complex ions again 3. In the r maining complex ions, identify errors in ligands (See Appendix 2): e.g. - NH_{3} ligands bonded to an H on the LEFT only: $\mathrm{NH}_{3}----$ (connectivity error) - Cl^{-} - $\mathrm{NH}_{3}{ }^{+}$ Mark these complex ions to maximise errors but treat any incorrectly bonded $\mathrm{NH}_{3}, \mathrm{Cl}^{-}$and NH_{3} as ECF		

Question		Expected answers	Marks	Additional guidance
		SEE APPENDIX 2 FOR EXAMPLES		
e	ii	143.4 OR $107.9+35.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ used i.e. molar mass AgCl OR amount of $\mathrm{AgCl}=0.02(000) \mathrm{mol} \checkmark$ Ratio ratio complex: $\mathrm{Cl}^{-}=1: 2$ OR 0.01:0.02 \checkmark Identification - available from 1:2 ratio OR $\mathbf{2 C l}^{-}$ Therefore the complex is \mathbf{B}	3	DO NOT ALLOW AgCl ${ }_{2}$ DO NOT ALLOW $\frac{2.868}{0.01} 0.01$ linked to AgCl , not complex ALLOW this mark ONLY for evidence of Cl^{-} Quality of Written Communication Identification as \mathbf{B} is dependent on correct 1:2 ratio OR $\mathbf{2 C l}$ for this mark
		Total	15	

Question		Answer	Mark	Guidance
2	(a)	$\begin{aligned} & \text { Fe: } \quad\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} \\ & \mathrm{Fe}^{2+}:\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{6} \checkmark \end{aligned}$	2	ALLOW 4s before $3 d$, i.e. $\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$ ALLOW 4s ${ }^{0}$ ALLOW subscripts IGNORE $1 s^{2} 2 s^{2} 2 p^{6}$ is written out a second time
	(b)	coloured (compound/complex/precipitate/ions) OR catalyst	1	IGNORE 'variable oxidation states' but ALLOW the idea that Fe^{2+} can react to form an ion with a different charge/oxidation state. 'ion' is essential: 'atom' or 'metal' is not sufficient IGNORE partially filled d sub-shell/d orbital (question refers to property of Fe^{2+})
	(c)	Fe oxidised from +2 to $+3 \checkmark$ Cr reduced from +6 to $+3 \checkmark$	2	CHECK and credit oxidation numbers on equation ALLOW Fe^{2+} oxidised to Fe^{3+} ALLOW Cr^{6+} reduced to Cr^{3+} ALLOW + sign after number in oxidation number, ie 2+, etc ALLOW 1 mark only if oxidation numbers given with no identification of which species has been oxidised or reduced, ie Fe goes from +2 to +3 AND Cr goes from +6 to +3 Fe reduced from +2 to +3 AND Cr oxidised from +6 to +3 (oxidation and reduction the wrong way around) DO NOT ALLOW just ' Fe is oxidised and Cr reduced' IGNORE other oxidations numbers (even if wrong) IGNORE any references to electrons

Question			Answer	Mark	Guidance
2	(f)	(ii)	 OR $\checkmark \checkmark$ For each structure Ligand donates an electron pair to metal (ion) $/ \mathrm{Pt}^{2+} / \mathrm{Pt}$ OR forms a coordinate bond to the metal (ion)/Pt ${ }^{2+} / \mathrm{Pt} \checkmark$	3	IGNORE any charge, ie $\mathrm{Pt}^{2+} \mathrm{OR} \mathrm{Cl}^{-}$, even if wrong IGNORE any angle, even if wrong ACCEPT bonds to $\mathrm{H}_{3} \mathrm{~N}$ (does not need to go to ' N ') Assume that a solid line is in plane of paper Each structure must contain 2 'out wedges' AND 2 'in wedges' or dotted lines OR 4 solid lines at right angles (all in plane of paper) DO NOT ALLOW any structure that cannot be in one plane DO NOT ALLOW any structure with Cl_{2} as a ligand DO NOT apply ECF from one structure to the other ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair ALLOW 'dative covalent bond' or 'dative bond' as alternative for 'coordinate bond IGNORE cis and trans labels (even if incorrect) IGNORE incorrect connectivity to NH_{3}, ie ALLOW $\mathrm{NH}_{3}-$
		(iii)	platin binds to DNA (of cancer cells) OR platin stops (cancer) cells dividing/replicating \checkmark	1	

Question			Answer	Mark	Guidance
3	(a)	(i)	$\begin{aligned} & \text { amount } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \text { used } \\ & =0.00100 \times \frac{24.6}{1000}=2.46 \times 10^{-5} \mathrm{~mol} \end{aligned}$ amount O_{2} in $\mathbf{2 5} \mathbf{c m}^{\mathbf{3}}$ sample $=\frac{2.46 \times 10^{-5}}{4}=6.15 \times 10^{-6} \mathrm{~mol} \checkmark$ Concentration of O_{2} in sample $=6.15 \times 10^{-6} \times \frac{1000}{25}=2.46 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ mass concentration of O_{2} in $\mathrm{mg} \mathrm{dm}^{-3}$ $=2.46 \times 10^{-4} \times 32 \mathrm{~g}=7.872 \times 10^{-3}\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ $=7.872\left(\mathrm{mg} \mathrm{dm}^{-3}\right)^{\mathrm{y}}$	4	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0000246 (mol) $\text { ECF }=\frac{\text { answer above }}{4}$ ALLOW 0.00000615 g ECF answer above $\times \frac{1000}{25}$ ALLOW 0.000246 g ECF $=$ answer above $\times 32 \times 1000$ ALLOW 7.9 OR 7.87 ALLOW 2 SF up to calculator value Must be in $\mathbf{m g}$ for mark Note: Candidate may work out steps 3 and 4 in the opposite order, ie mass of O_{2} in sample $=6.15 \times 10^{-6} \times 32 \times 1000=1.968 \times 10^{-1} \mathrm{mg}$ mass concentration of O_{2} in $\mathrm{mg} \mathrm{dm}^{-3}$ $=1.968 \times 10^{-1} \times \frac{1000}{25}=7.872\left(\mathrm{mg} \mathrm{dm}^{-3}\right)$
		(ii)	Comment $7.872>5$ so fish can survive	1	ECF If final answer > 5 fish can survive If final answer < 5 fish cannot survive
	(b)	(i)	NO ${ }^{\text {r }}$	1	ALLOW $\mathrm{N}_{2} \mathrm{H}_{2}$

Question		er	Mark	Guidance
(b)	(ii)	$\begin{aligned} & \quad 2 \mathrm{H}_{2} \mathrm{O}+2^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow 2 \mathrm{NO}+\mathrm{I}_{2}+4 \mathrm{OH}^{-} \\ & \text {OR } 2 \mathrm{H}^{+}+{ }^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow 2 \mathrm{NO}+\mathrm{I}_{2}+2 \mathrm{OH}^{-} \\ & \text {species } \checkmark \\ & \text { balance } \checkmark \end{aligned}$	2	IGNORE state symbols ALLOW multiples For species ONLY, IGNORE any extra $\mathrm{H}_{2} \mathrm{O}$ or e^{-}on either side of the equation ALLOW on LHS: $2 \mathrm{HI}+2 \mathrm{NO}_{2}^{-}$OR $2 \mathrm{I}^{-}+2 \mathrm{HNO}_{2}$ ALLOW species and equation involving $\mathrm{N}_{2} \mathrm{H}_{2}$: $\begin{aligned} & \quad 6 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{II}^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow \mathrm{N}_{2} \mathrm{H}_{2}+4 \mathrm{I}_{2}+10 \mathrm{OH}^{-} \\ & \text {OR } 6 \mathrm{H}^{+}+8 \mathrm{I}^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow \mathrm{N}_{2} \mathrm{H}_{2}+4 \mathrm{I}_{2}+4 \mathrm{OH}^{-} \\ & \text {species } \checkmark \\ & \text { balance } \checkmark \end{aligned}$
		Total	8	

| Question | | Answer | Marks | Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| (a) | | | | |
| (b) | | | | |

Quest	Answer	Marks	Guidance
(c)	```FOLLOW through stages to mark Moles in titration \(n\left(\mathrm{KMnO}_{4}\right)=0.0200 \times \frac{26.2}{1000}=5.24 \times 10^{-4} \mathrm{~mol}\) \(n\left(\mathrm{SO}_{3}{ }^{2-}\right)=1.31 \times 10^{-3} \mathrm{~mol} \checkmark\) \\ Scaling \\ Mass \\ Mass of \(\mathrm{Na}_{2} \mathrm{SO}_{3}\) in sample \[=126.1 \times 5.24 \times 10^{-3} \mathrm{~g}=0.660764 \mathrm{~g} \] \\ Percentage \[\% \mathrm{Na}_{2} \mathrm{SO}_{3}=\frac{0.660764}{0.720} \times 100=91.8 \% \]```	5	ANNOTATIONS MUST BE USED AT LEAST 3 SF for each step ECF 2.5 x answer above ECF 4 x answer above ECF 126.1 x answer above ALLOW 0.661 g up to calculator value $\text { ECF } \frac{\text { calculated mass above }}{0.720} \times 100$ ALLOW 91.8\% (1 DP) up to calculator value of 91.77277778 i.e. DO NOT ALLOW 92\%
	ALLOW alternative approach based on theoretical content of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ for last 2 marks Theoretical amount, in moles, of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ in sample $n\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)=\frac{0.720}{126.1}=5.71 \times 10^{-3} \mathrm{~mol} \checkmark$ Percentage $\% \mathrm{Na}_{2} \mathrm{SO}_{3}=\frac{5.24 \times 10^{-3}}{5.71 \times 10^{-3}} \times 100=91.8 \%$		COMMON ERRORS: Watch for random ECF \%s for \% from incorrect $M\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$, e.g. use of $M\left(\mathrm{SO}_{3}{ }^{2-}\right)=80.1$ giving 58.3%
	Total	10	

Question		Expected answers	Marks	Additional guidance
	c	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=54.6 \%$, award 5 marks $\begin{aligned} & \text { Amount } \mathrm{Fe}^{2+} \text { in } 250 \mathrm{~cm}^{3} \text { solution }-3 \text { marks } \\ & \text { amount } \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \text { used }=0.0200 \times \frac{26.5}{1000} \\ & =5.30 \times 10^{-4}(\mathrm{~mol}) \checkmark \\ & \text { amount } \mathrm{Fe}^{2+}=6 \times 5.30 \times 10^{-4} \\ & =3.18 \times 10^{-3} \mathrm{~mol} \checkmark \\ & \text { amount } \mathrm{Fe}^{2+} \text { in original } 250 \mathrm{~cm}^{3}=10 \times 3.18 \times 10^{-3} \\ & =3.18 \times 10^{-2}(\text { mol }) \checkmark \end{aligned}$		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below Working must be to at least 3 SF throughout BUT ignore trailing zeroes, i.e. for 0.490 allow 0.49 ALLOW ECF from different Fe^{2+} ratio in equation from 8(b) BUT still ALLOW 6:1 even from different ratio in equation If no equation use actual $6: 1$ ratio DO NOT AWARD 'ratio mark' at all for use of $1: 1$ ratio - makes problem easier ECF $10 \times$ answer above
		$\begin{aligned} & \text { \% Fe in ore }-2 \text { marks } \\ & \text { mass of } \mathrm{Fe} \text { in ore }=55.8 \times 3.18 \times 10^{-2} \mathrm{~g} \\ & =1.77444 \mathrm{~g} \checkmark \end{aligned}$		ECF $55.8 \times$ answer above IF answer above has not been used AND $\times 55.8$, DO NOT ALLOW this mark but do ALLOW final \% IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
		$\begin{aligned} & \text { percentage Fe in ore }=\frac{1.77444}{3.25} \times 100 \\ & =54.6 \% \end{aligned}$	5	ECF $\frac{\text { answer above }}{3.25} \times 100$ ALLOW 54.5\% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
				COMMON ERRORS 5.46 $\checkmark \checkmark \checkmark \checkmark$ $\times 10$ omitted 51.5 $\checkmark \checkmark \checkmark \checkmark$ titre taken as 25.0 156.2 $\checkmark \checkmark \checkmark \checkmark$ $\times 159.6$ instead of 55.8 15.62 $\checkmark \checkmark \checkmark$ $\times 159.6$ and $\times 10$ omitted 45.5 $\checkmark \checkmark \checkmark \checkmark$ $5: 1$ ratio 1.52 $\checkmark \checkmark \checkmark \checkmark$ $\div 6$ instead of $\times 6$

Question		Expected answers	Marks	Additional guidance
d	d	$E^{-\theta}$ for MnO_{4}^{-}is more positive/greater than Cl_{2} OR E^{-}for $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is less positive/smaller than $\mathrm{Cl}_{2} \checkmark$ MnO_{4}^{-}reacts with $\mathrm{Cl}^{-} \mathbf{O R ~ H C l}$ (forming Cl_{2} gas) OR $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ does not react with Cl^{-}ions \checkmark	2	ORA: E° for Cl_{2} is less positive/smaller than MnO_{4}^{-} OR E^{-}for Cl_{2} is more positive/greater than $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
		Total	10	

